ON EQUIDISTANT BINARY CODES OF LENGTH n=4k+1 WITH DISTANCE d=2k

J. H. van LINT

Received 2 February 1984

The aim of this paper is to provide a short proof of the main result (Theorem 2.12) of [3], using standard methods from the theory of combinatorial designs.

We consider a binary alphabet **F** with symbols +1 and -1. Let C be a code over **F** with wordlength n=4k+1 such that any two words have Hamming distance d=2k. Let m:=|C|.

We define the matrix A of size m by 4k+1 by taking the words of C as the rows of A. Then the properties of C are described by

$$AA^T = 4kI + J.$$

Just as in the proof of Fisher's inequality (cf. [2]§10.2) it follows from (1) that A has rank m, i.e., $m \le 4k+1$. We are interested in the case where |C| is maximal, i.e., m=4k+1. Let $c_1, c_2, ..., c_{4k+1}$ be the column sums of A. In other words $c = A^T j$. We define the matrix X by $X := A^T A$. Then we have

$$X_{\mathcal{C}} = A^{T}AA^{T}j = A^{T}(4kI+J)j = (8k+1)A^{T}j = (8k+1)c.$$

i.e., \underline{c} is eigenvector of X with eigenvalue 8k+1. Let \underline{u} be an eigenvector of X with $X\underline{u} = \lambda \underline{u}$ and $\underline{u}^T\underline{c} = 0$ (note that X is symmetric). From (2) we find

$$X^2 = A^T (4kI + J)A = 4kX + \underline{c}\underline{c}^T,$$

and hence

$$\lambda^2 \underline{u} = X^2 \underline{u} = (4kX + \underline{c}\underline{c}^T)\underline{u} = 4k\lambda\underline{u},$$

i.e., $\lambda = 4k$. We have proved the following fact:

(2) X has eigenvalue 8k+1 with multiplicity 1 and eigenvalue 4k with multiplicity 4k.

This paper was submitted to Combinatorica at the request of the editors. AMS subject classification (1980): 05 B 05, 05 B 20

322 J. H. VAN LINT

We now define a matrix $Y=(y_{ij})$ by Y:=X-4kI. Clearly all the entries y_{ij} are odd integers. We have

$$\sum_{i,j} (y_{ij}^2 - 1) = \operatorname{tr}(Y^2) - (4k + 1)^2$$

and by (2) the right-hand side is equal to 0. Therefore we have established the following fact:

(3) The off-diagonal elements of A^TA are equal to 1 or -1.

Consider any three columns of A (number them 1, 2, 3) and normalize the first in the usual way to j. We use the familiar Hadamard matrix counting argument cf. [2] §14.1). Let +++ occur α times in the three columns, $++-\beta$ times, $+-+\gamma$ times, $+--\delta$ times. Let ε_{ij} (i,j=1,2,3) denote the inner product of column i with column j.

$$\alpha + \beta + \gamma + \delta = 4k + 1$$

$$\alpha + \beta - \gamma - \delta = \varepsilon_{12}$$

$$\alpha - \beta + \gamma - \delta = \varepsilon_{13}$$

$$\alpha - \beta - \gamma + \delta = \varepsilon_{23}$$

from which we find

Then

$$4\alpha = 4k + 1 + \varepsilon_{12} + \varepsilon_{13} + \varepsilon_{23}.$$

This implies that either all the ε_{ij} are equal to 1 or exactly one of them is 1, the other two being -1. This means that if we call two columns of A related if their inner product is not -1, then this relation is an equivalence relation and furthermore we see that the columns of A can be partitioned into two equivalence classes, say of size t and 4k+1-t, such that after a reordering of the columns we have

(4)
$$A^{T}A = \begin{pmatrix} 4kI + J - J \\ -J & 4kI + J \end{pmatrix},$$

where the matrices on the diagonal have size t resp. 4k+1-t. W.1.0.g. we may assume that the first row of A is j^T . It follows that all other rows of A have 2k+1 entries +1 and 2k entries -1. Therefore

$$j^T A^T A j = (4k+1)^2 + 4k.$$

On the other hand (4) implies that

$$j^T A^T A j = t(2t-1) + (4k+1-t)(8k-2t+1).$$

Combining these two equations we find

$$t = \frac{1}{2} \left(4k + 1 \pm \sqrt{8k + 1} \right).$$

Since t is an integer, 8k+1 must be the square of an odd integer, i.e.,

(5)
$$k = \frac{1}{2}(u^2 + u)$$
 and $t = u^2$ or $t = (u+1)^2$, $(u \in \mathbb{Z})$.

We shall now show that the existence of the equidistant code C of size 4k+1 implies the existence of a certain block design and vice versa. In order to do this we define the matrix

$$B := A \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix}.$$

By (4) and the fact that C is equidistant we have

$$BB^T = B^T B = 4kI + J.$$

Note that (6) implies that

$$BB^TB = 4kB + JB = 4kB + BJ$$

so $BJ=JB=\gamma J$ and hence $\gamma^2=4k+(4k+1)=(2u+1)^2$. It follows that B is the ± 1 incidence matric of a $2-((2u^2+2u+1), u^2, 1/2(u^2-u))$ design. Conversely, if such a design exists, the rows of its incidence matrix are the words of the equidistant code C. Therefore the following theorem has been proved (cf. [3]):

Theorem. An equidistant binary code with wordlength n=4k+1 and distance d=2k exists if and only if $k=1/2(u^2+u)$ and there exists a $2-(2u^2+2u+1, u^2, 1/2(u^2-u))$ design.

Remark. It is known that such designs exist if u is a prime power. They were constructed independently by R. M. Wilson (unpublished) and A. E. Brouwer [1].

References

- [1] A. E. Brouwer, An infinite series of symmetric designs, to appear.
- [2] M. Hall, Jr., Combinatorial Theory, Blaisdell Publ. Co., Waltham, Mass. 1967.
- [3] D. R. STINSON and G. H. J. VAN REES, The equivalence of certain equidistant binary codes and symmetric BIBDs, Combinatorica 4 (1984), 357—362.

J. H. van Lint

Department of Mathematics and Comp. Sci. University of Technology Den Dolech 2 P.O.B. 513 5600 MB Eindhoven The Netherlands